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SUMMARY

The interaction between a curved shock wave and a compressible vortex is numerically investigated. The
investigation concentrates on the local deformation of the shock structure due to the shock–vortex
interaction. The essentially non-oscillatory (ENO) scheme is used to solve the unsteady two-dimensional
Euler equations. A curved shock wave is obtained by the diffraction of an initially planar shock wave
around a right-angled corner and then allowed to interact with a strong compressible vortex superim-
posed on the flow. The same vortex affects the shock wave differently depending on the placement of the
vortex because of the varying strength of the shock wave. This effect could range from a non-symmetric
deformation of the shock wave to a local disruption in the shock structure depending on the strength of
the shock wave in the interaction region. This process leading to a local disruption in the shock structure
is analyzed in detail. It is shown that such a disruption in the shock structure can be predicted by simple
one-dimensional considerations. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shock wave–vortex interactions have been a fertile field of investigation for several decades.
The previous experimental approach to these investigations has given way to a more numerical
approach in this decade. These numerical investigations have been greatly facilitated by the
evolution of high resolution shock-capturing schemes. Shock wave–vortex interactions are of
fundamental importance in diverse fields, such as noise production in high-speed aircraft, in
turbulence amplification by shock waves and in the interaction between mixing zones and
shock waves among other applications.

Shock–vortex interactions can be broadly classified into weak and strong interactions. Weak
interactions involve slight deformation of the shock wave and the acoustic wave generated can
be predicted by linear theories and simulated using simple numerical techniques. Strong
interactions involve significant deformation of the shock wave by the vortex and may include
the production of secondary shocks. Linear theories are no longer applicable and high
resolution shock-capturing schemes are required for accurate numerical simulation of this
strongly non-linear phenomenon.
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Both the strong and weak shock–vortex interactions have been studied numerically in the
frame work of the Euler equations [1,2] and by a direct numerical simulation [3]. These
studies generally involved the numerical simulation of the interaction between a vortex and
a planar shock wave.

In real life applications, the shock wave interacting with a vortex can often be non-pla-
nar. This work is concerned with the numerical investigation of the interaction between a
compressible vortex and a curved shock wave. The numerical simulations are two-dimen-
sional and solve the Euler equations defining inviscid compressible flow. The significantly
larger time scales for viscous dissipation as compared with other important time scales
involved in shock–vortex interactions makes it possible to neglect viscous effects in numeri-
cal computations [2]. A high resolution shock-capturing scheme in the form of the essen-
tially non-oscillatory (ENO) scheme [4,5] is used to solve for the unsteady Euler equations.
The dual capacity of ENO schemes for high-order accuracy along with non-oscillatory
shock capturing makes the ENO schemes especially attractive for modeling a complex
interaction involving a shock wave—that of a curved shock wave interacting with a strong
compressible vortex.

The curved shock wave is obtained by diffracting an incident planar shock wave around
a right-angled corner and this is allowed to interact with a compressible vortex superim-
posed on the flow. The authors concentrate on investigating the local deformation of
the shock structure especially in the interaction region. The curved shock wave undergoes
a typical modification to its structure in the presence of a vortex depending upon the
clockwise or counter-clockwise orientation of the vortex. Because of the varying strength of
the shock wave, the same vortex could produce a very different effect on the shock
structure in the interaction region depending on the location of the vortex. A vortex that
causes a non-symmetric deformation of the shock wave if the interaction region consisted
of the relatively stronger part of the shock could cause a local disruption in the shock
structure if the interaction region was at a different and weaker part of the shock wave.
This disruption is of a temporary nature and the shock wave subsequently regains its
definition.

Such a local disruption in the shock structure has been observed in experimental investi-
gations involving a planar shock wave with a two-dimensional compressible vortex [6], as
well as in the more complicated interaction of shock waves with a cavity [7], where curved
reflected shock waves interact with the compressible vortex generated by shock wave dif-
fraction. This phenomenon of a local disruption in the shock wave when interacting with a
strong compressible vortex has not been studied previously and in this work the process
leading to a local disruption in the shock structure, especially for a curved shock wave, is
analyzed in detail. It is also shown that such disruptions can be predicted by simple
one-dimensional considerations.

2. GOVERNING EQUATIONS AND NUMERICAL TECHNIQUE

The two-dimensional unsteady Euler equations of gas dynamics describing inviscid com-
pressible flow in the differential and conservative form can be written as:

ut+ fx+gy=0. (1)

The vectors in Equation (1) are
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in which r is density, p is static pressure, (u, 6) is the velocity in Cartesian co-ordinates
(x, y), and e is the total energy, related to the other variables by an equation of state,
which for a perfect gas, is

e=
p

(g−1)
+

1
2

r(u2+62), (3)

where g is the ratio of specific heats (=1.4).
The Euler equations in the above form are solved by the ENO [4,5] scheme. The ENO

scheme is able to maintain a high-order accuracy as well as provide for non-oscillatory
shocks by using an adaptive stenciling procedure. The points in the stencil that contribute
to the computation of numerical fluxes at cell interfaces for the next time step are chosen
in a non-linear manner and depend on the instantaneous solution. This choice attempts
to make use of the smoothest possible information in the computation of the fluxes. In
this work the ENO scheme used is in the ENO-Roe form [8,9] and has the ENO construc-
tion procedure based on the numerical fluxes rather than on cell averages of the state
variables. An explicit form is used to solve this time-dependent flow and advancement
in time is by a Runge–Kutta type TVD time integration [8,9]. The ENO-Roe form along
with a TVD Runge–Kutta time discretization belongs to the class of efficient imple-
mentation for ENO schemes and are much easier to implement especially for multi-dimen-
sional cases as compared with the original ENO schemes [4,5] with the ENO construction
procedure based on cell averages and a Lax–Wendroff procedure for the time discretiza-
tion.

The ENO-Roe scheme is based on the first-order Roe scheme and thus will admit
entropy violating expansion shocks. To prevent entropy violating solutions the ‘entropy
fix’ described in [9] is used. Computing unsteady shock waves by high resolution shock-
capturing schemes result in the generation of spurious entropy [10,11]. But it has been
shown [11] that pressure waves remain unaffected by the numerical entropy generation to
the extent that even acoustic computations are not likely to be affected by this phe-
nomenon. Thus, the effect of the numerical entropy generation on the type of flow phe-
nomenon being considered in the present study of shock wave–vortex interaction should be
negligible.

Unless otherwise specified, a third-order accuracy in space and a second-order accuracy
in time was used. All numerical investigations involved a moving shock wave and in
the initial configuration the shock was planar. The initial conditions behind the shock
are prescribed according to the Rankine–Hugoniot relations, while ambient conditions
are given ahead of it. Characteristic boundary conditions based on Riemann invariants
are prescribed at open boundaries and reflection boundary conditions at the solid
boundaries. Regular fixed Cartesian grids were used and unless stated consisted of
300×300 grid points. The problems of accuracy related to the order of the numerical
scheme and the discretization used, including a grid refinement study is discussed in a later
section.
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3. INTERACTION OF CURVED SHOCK WITH A VORTEX

A detailed numerical investigation in which a curved shock wave interacts with a compressible
vortex superimposed on the flow is carried out. The curved shock wave is obtained by
diffracting an incident planar shock wave around a right-angled corner. Such a diffraction
produces a curved shock wave separating two regions in which the shock wave is plane. The
two regions containing a planar shock are the plane undisturbed part of the incident shock at
the top and a ‘wall shock’ at the bottom that is perpendicular to the wall and tangent to the
curved shock [12]. This is shown schematically in Figure 1. The strength of the curved part of
the shock is maximum at the top where it meets the plane undisturbed incident shock and it
decreases thereafter, but at no place does it become vanishingly weak even for low Mach
numbers [12].

The shock wave proceeds into ambient conditions and interacts with a compressible vortex
superimposed on the ambient state, as shown in Figure 1. The vortex generated is similar to
those in [1,2]. The vortex model consists of two regions of vortical flow; an inner core region
consisting of uniform velocity and a surrounding region where the velocity gradually goes to
zero. This is represented by

Uu(r)=Uc, rBRc, (4)

Uu(r)=Ar+
B
r

, Rc5r5Ro, (5)

where Uu is the tangential velocity, Uc the constant core velocity, r the distance from vortex
center, Rc the vortex core radius, Ro the outer radius.

The coefficients A and B in Equation (5) are chosen so that Uu equals Uc when r equals Rc

and Uu equals 0 when r equals Ro. The values for pressure and density in the vortex are taken
to be the same as those in the ambient (as in [1]). The tangential velocity, density and pressure
distribution in the vortex tends towards that measured experimentally for a freely moving

Figure 1. Initial conditions and geometry for curved shock–vortex interactions.
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Table I. Conditions for curved shock–vortex interactions

Vortex center Approximate Mach numberTest case

X Y Y+Rc Y Y−Rc

0.5 1.3 1.51 1.5 1.43
0.5 0.7 1.332 1.27 1.2

compressible vortex [6] by the time of the shock–vortex interaction, and this is discussed in a
later section.

The physical domain, which is the same as the computational domain along with the initial
conditions, is shown in Figure 1. The total dimensions are 1.2 in the x-direction and 2.0 in the
y-direction. The right-angled corner extends from x=1.0 to x=1.2 and from y=0 to y=1.0.
In all cases the planar shock was at x=1.1 at the start of the simulations and it proceeds from
right to left. The vortex has a core radius Rc=0.15 and an outer radius Ro=0.3. Two
different sets of simulations with the vortex center at different heights are discussed, the
positions of the vortex centers are listed in Table I and also shown in Figure 1.

Figure 2. Pressure contours for test case 1 with counter-clockwise rotating vortex at normalized times (T); (a)
T=0.52, (b) T=0.62, (c) T=0.71.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)
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Figure 2 (Continued)

In all cases considered, the incident planar shock wave had a Mach number of 1.5, which
implied subsonic conditions behind the shock with a Mach number 0.6. The constant core
velocity Uc equalled the velocity of the fluid behind the incident planar shock. This value for
the core velocity Uc has been the basis for a strong interaction involving a planar shock wave
of similar magnitude and a compressible vortex in Reference [2]. The approximate Mach
number for the diffracting shock wave (undisturbed by a superimposed vortex) at positions
corresponding to the center of the superimposed vortex as well as two points distances Rc

above and below the vortex centers for the two test cases discussed are given in Table I.
The initial placement of the planar shock wave and the vortex dimensions ensures that the

diffracted shock wave encounters the vortex before the presence of the solid boundaries begin
to affect the vortex. It is assumed that the vortex produced due to flow separation at the
right-angled corner behind the diffracting shock does not affect the qualitative character of the
shock–vortex interaction being investigated. This is a reasonable assumption considering the
localized nature of this vortex at the corner during the interaction period and the distance
between the shock–vortex interaction region and this vortex.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)
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Figure 2 (Continued)

4. NUMERICAL RESULTS

The first test case pertains to the vortex center placed at x=0.5 and y=1.3. This implies that
in the interaction region, the shock wave is almost planar consisting mostly of the plane
undisturbed part of the incident shock. The results are similar to those for a strong interaction
between planar shocks and a compressible vortex discussed in [1,2]. The interaction process is
also discussed in detail in [3]. Results in this and the subsequent test case are shown in terms
of pressure contours and consist of 30 contour lines at equal intervals.

Figure 2(a)–(c) show results for a counter-clockwise rotating vortex at normalized times of
0.52, 0.62 and 0.71 respectively. When the shock wave enters the vortical region, the part of
the shock in the interaction region where the shock velocity is opposed by the vortex rotation
propagates slower than the part where the shock velocity is supported by the vortex rotation.
In this particular case, the bottom half of the shock in the interaction region meets an
opposing flow and propagates slower than the top half, which encounters a flow in the same
direction as the propagating shock wave. This initially implies a symmetric deformation of the
shock, as seen in Figure 2(a). There is also a strengthening of the part of the shock wave in
the interaction region where the advancing shock faces an opposing flow due to an increase in
the relative Mach number (relative to the oncoming flow) of this part of the shock and a

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)
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Figure 3. Pressure variation for test case 1 (T=0.52).

similar weakening of the part of the shock in the interaction region where the vortical velocity
is in the same direction as that of the shock due to a decrease in its relative Mach number
(relative to the oncoming flow). This non-uniform jump across the shock means a distortion
of the initial vortex leading to a more non-symmetric distortion of the shock, this can be seen
in Figure 2(b). The additional pressure gradients that appear parallel to the shock produce
secondary shock structures both of which are attached to the shock, as seen in Figure 2(c).
These secondary shock structures are in the form of a Mach structure that agrees with
observations in [2] regarding the formation of a Mach structure in the later stages of an
interaction of a relatively strong shock with a compressible vortex. The shock will gradually
relax to its original form as the vortex is left behind.

Figure 3 shows the pressure variation along the x-direction at y=1.18 and y=1.42 both
equidistant from the vortex center (y=1.3) at a normalized time of 0.52. This situation
corresponds to a symmetric deformation of the shock, as shown in Figure 2(a). At y=1.18
and y=1.42, the shock is almost normal to the x-axis and is also respectively stronger and
weaker due to the change in the relative Mach number because of the interaction with the
vortex. Assuming the shock to be spread over one grid point for this third-order ENO scheme,
the pressure ratios across the shock are approximately 3.0 at y=1.18 and 1.97 at y=1.42. The
plane undisturbed shock had a Mach number of 1.5 corresponding to a pressure ratio of 2.45.
From the Rankine–Hugoniot relations the relative Mach number at the stronger part of the
shock (y=1.18) is 1.64 and the relative Mach number at the weaker part (y=1.42) is 1.35.
Thus, this indicates the shock undergoing an almost symmetrical deformation at that time.

In the second test case considered, the vortex center was at x=0.5 and y=0.7. The shock
structure in the interaction region is totally curved and on average at a weaker strength than
the earlier test case with the shock strength decreasing along the curved shock from the top
onwards. Results are presented for the counter-clockwise and clockwise rotation of the vortex.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)
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First the counter-clockwise case will be discussed. Figure 4(a) at a normalized time 0.52
shows the shock wave profile before the shock has entered the vortical region. Figure 4(b) at
normalized time 0.66 shows the modified shock profile due to the vortical velocity field. The
velocity field of the vortex when added to that of the curved shock results in the upper part
of the shock wave in the interaction region traveling faster than the lower part. This results in
a pulling forward of the upper part of the shock and depressing the lower part. Compounded
with the fact that the shock was already curved to start with, this implies a tendency on the
part of the shock to become almost horizontal to the x-axis in the interaction region, as in
Figure 4(b).

Because of the shock as a whole being relatively weaker in the interaction region compared
with the previous test case, there is a further decrease in the relative Mach number of the shock
in the part of the core region where the vortical velocity is in the same direction as that of the
velocity of the shock. Since the shock front is almost parallel to the x-axis in the interaction
region, the lowest relative Mach number for the shock front will occur where it is almost
aligned with the vortex diameter, which is parallel to the x-axis. At this position, a situation
occurs where to the left of the vortex center, the direction of the vortical velocity almost
matches that of the shock velocity in the interaction region. The resulting decrease in the
relative Mach number of the shock could lead to a local disruption in the shock structure as

Figure 4. Pressure contours for test case 2 with counter-clockwise rotating vortex; (a) T=0.52, (b) T=0.66, (c)
T=0.76, (d) T=0.85, (e) T=1.04.
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A. CHATTERJEE AND A. POVITSKY266

Figure 4 (Continued)

encountered here. Figure 4(c) at normalized time 0.76 shows the disruption in the shock wave
at and near left of the vortex center. The shock remains disrupted in the third (bottom left)
quadrant of the vortex. Figure 4(d) shows the still disrupted shock wave at a normalized time
0.85. Figure 4(e) at a normalized time 1.04 shows the resulting shock structure including
secondary shocks after the vortex is crossed. The absence of a Mach stem in the secondary
shock structures, and the presence of a triple point where the secondary structures meet is
again in agreement with observations in [2,3] concerning the later stages of the interaction
between a relatively weaker shock and a compressible vortex.

In the clockwise case (see Figure 5), the initial shock structure (same as in Figure 4(a)) is
acted upon by the vortical velocity field and modifications to it make it approach the vortex
center almost normal to the x-axis. This is a result of the upper part of the curved shock being
held back and the lower part pulled forward. Because of this, the lowest relative Mach number
for the shock front occurs when it is almost aligned with the vortex diameter, which is parallel
to the y-axis. In this position, a situation again arises below the vortex center where the
direction of the vortical velocity almost matches that of the shock front in the interaction
region. This causes a sufficient decrease in the relative Mach number to produce a local
disruption in the shock structure. Figure 5(a) at a normalized time 0.76 shows the disruption
in the shock wave. Again the shock remains disrupted in the third quadrant of the vortex and

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)
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Figure 4 (Continued)

reunites after the vortex is crossed. Figure 5(b) at a normalized time 1.04 shows the reunited
shock with secondary structures as in the counter-clockwise case.

In a qualitative sense, the basic shock–vortex interaction is the same regardless of a
clockwise or a counter-clockwise orientation of the vortex. But the two interactions performed
with a clockwise and a counter-clockwise rotating vortex serves to better illustrate the basic
premise that a shock wave encountering a component of the vortical velocity field in the
direction of the shock wave propagation can weaken the shock wave to an extent that a local
disruption in the shock structure takes place.

The disruption in the shock wave (for a counter-clockwise rotating vortex at a normalized
time of 0.76), captured on a discretization of 600×600 grid points using an ENO scheme of
the same spatial and temporal accuracy, is shown locally for the vortex and vortex core region
in Figure 6(a) and (b) respectively. A local disruption in the shock front can again be
discerned.

In Figure 7(a) the pressure variation along the y-axis at discrete points is shown for the
counter-clockwise rotating vortex of the second test case at a normalized time of 0.76
(corresponding to a local disruption in the shock structure). These variations are at three
x-stations corresponding to the center of the vortex at x=0.5 and at equidistant points
x=0.42 and x=0.58 from the center. At these points, the shock is almost normal to the

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)
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Figure 4 (Continued)

y-axis. The pressure jump across the shock at x=0.42 to the left of the vortex center can be
compared with that at x=0.58 to the right, and shows the relative weakening and strengthen-
ing respectively due to the interaction with the vortex. A finite jump in pressure does not exist
along x=0.50 implying a local disruption in the shock structure there. In Figure 7(b), the
pressure jump across the entire shock wave is compared with that of a shock wave at the same
position but undisturbed by a vortex. A local one-dimensional analysis is used to obtain the
pressure jump across the shock. This is a simple approximation, but on average it does provide
a reasonable qualitative picture of the shock strength variation in the interaction region. The
undisturbed shock has a continuously decreasing strength from its ‘top’ to the final position
perpendicular to the wall. The disturbed shock is weaker than its undisturbed counterpart left
of the vortex center (x=0.50), where the vortical velocity is in the same direction as the shock
velocity. To the right of the vortex center, the shock velocity is opposed by the vortex rotation
causing an increase in its relative Mach number and hence of the shock strength compared
with the undisturbed shock. The strength of the shock is weakest in the core region to the left
of the vortex center, where the shock is almost parallel to the x-axis and the shock wave
virtually vanishes. Similarly, in the core region to the right of the vortex center, where the
shock is almost parallel to the x-axis, the shock strength peaks to a value comparable with that
in the top planar part.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)
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Figure 4 (Continued)

5. TESTS FOR NUMERICAL ACCURACY

The phenomenon of a temporary disruption of the shock wave during its interaction with a
strong compressible vortex was further verified for different spatial accuracies of the numerical
scheme and also on different discretizations. Numerical simulations were carried out using
first-order- and second-order-accurate (in space) ENO schemes on a discretization of 300×300
grid points, in addition to using an ENO scheme of third-order spatial accuracy on the same
discretization discussed previously. A third-order-accurate in space ENO scheme was also used
to solve on discretizations of 600×600 and 150×150 grid points in addition to that discussed
extensively for 300×300 grid points. The temporal accuracy was always of second-order.

Figure 8(a) show pressure profiles through x=0.5 and parallel to the y-axis for the
counter-clockwise rotating vortex in the second test case at a normalized time of 0.76
(corresponding to a local disruption in the shock structure). The pressure contours correspond-
ing to this situation (Figure 4(c) and Figure 6) showed a disruption in the shock structure
around x=0.5 with the shock front almost parallel to the x-axis at that point. The pressure
profiles are obtained using ENO schemes of first-, second- and third-order spatial accuracy on
a discretization of 300×300 grid points. The lack of a finite pressure jump is predicted in all
three cases, although the spatially first-order-accurate scheme fails to predict the drop in

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)
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pressure around the vortex center. In Figure 8(b) the same variation is presented using an
ENO scheme of a third-order spatial accuracy on discretizations of 150×150, 300×300 and
600×600 grid points. The lack of a finite jump in pressure at this location is again predicted
in all the three discretizations, although there is a slight underprediction of the drop in pressure
around the vortex center in the coarser discretizations.

6. DISRUPTION CRITERIA

In order to establish conditions leading to a local disruption in the shock structure it is
necessary to get an idea about the extent of weakening undergone by a shock wave as it
encounters a flow field having a component of the flow velocity in the direction of the
propagating shock wave. In the present interaction, the original diffracting shock wave
experiences a maximum weakening when the peak tangential velocity of the vortex is directed
along the local shock wave velocity. This effect, which may lead to a local disruption in the
shock structure, is modeled as a one-dimensional idealization.

The modeling would require the characteristics of the flow field in the vortex at the time of
the local disruption in the shock structure (normalized time of 0.76). Figure 9 shows the vortex

Figure 5. Pressure contours for test case 2 with clockwise rotating vortex; (a) T=0.76, (b) T=1.04.
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Figure 5 (Continued)

flow field at a normalized time of 0.76 when left to freely evolve with an initial distribution
given by Equations (4) and (5), and this is used to approximate conditions prevailing in the
vortex for the actual shock–vortex interaction at the time of a local disruption in the shock
front. The tangential velocity distribution that develops along the radius of the vortex along
with the corresponding pressure and density profiles are shown in Figure 9(a) and (b)
respectively. A peak tangential velocity corresponding to a local Mach number of 0.6 can be
seen in the core region of the vortex, it may be noted that this is equal to the assigned core
vortex velocity Uc (Equation (4)) in the previous simulations. Both the pressure and density
decrease in a similar monotonic fashion along the vortex radius. These distributions for
tangential velocity, pressure and density inside the vortex are very similar to those measured
experimentally for a freely moving compressible vortex [6].

In the one-dimensional idealization considered, the ‘pre-interaction’ shock wave had pre-
shock conditions (1) (zero velocity and ambient values of pressure and density) and post-shock
conditions (2) prescribed according to the Rankine–Hugoniot relations for a given incident
shock wave Mach number. The pre-shock conditions (1) are then replaced by new conditions
(1%) corresponding to the peak tangential velocity of Mach number 0.6 in the vortex (see Figure
9(a)) together with related values of pressure and density from Figure 9(b). To find the
resultant shock wave Mach number, only a single Riemann problem between states (1%) and (2)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)



A. CHATTERJEE AND A. POVITSKY272

Figure 6. Pressure contours for test case 2 with counter-clockwise rotating vortex, and discretization 600×600 grid
points; (a) T=0.76, region of vortex; (b) T=0.76, region of vortex core.

needs to be solved. Figure 10 shows the resultant relative Mach number for this shock, as a
function of its initial incident Mach number. It can be seen that the shock wave will degenerate
into a Mach wave for incident shock wave Mach numbers between 1.2 and 1.3. This is in good
agreement with that encountered in the two-dimensional numerical simulations of the interac-
tion between a curved shock wave and a compressible vortex having the same peak tangential
velocity.

Assuming the disruption criteria to be a resultant relative Mach number of 1.015 for the
propagating shock wave, the above mentioned calculations were carried out to find the
incident shock wave Mach number (Md) at which the shock wave disruption is first encoun-
tered for various peak tangential velocities of the vortex (represented by state (1%) in the
calculations). In the curved shock–vortex interaction discussed previously, the core vortex
velocity Uc, which also equals the peak tangential velocity for the vortex, was taken as the
induced velocity behind an initially planar shock wave that propagates with Mach number Mp.
This value of Mp along with the computed values of Md are shown for various peak tangential
Mach numbers of the vortex in Figure 11.

7. CONCLUSION

The interaction between a curved shock wave and a compressible vortex was numerically
investigated using the ENO scheme. The curved shock was obtained by diffracting an incident
planar shock around a right-angled corner and was allowed to interact with a compressible
vortex superimposed on the flow. The investigation concentrated on the local deformation of
the shock structure in the interaction region. This deformation depends on the placement of
the vortex because of the curvature and varying strength of the shock.

The curved shock undergoes a very typical modification to its profile in the interaction
region in the presence of a vortex. Because of the varying strength of the shock, the same
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Figure 7. Pressure variations for test case 2 with counter-clockwise rotating vortex (T=0.76); (a) at discrete
x-stations; (b) the pressure jump compared with an undisturbed shock.
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Figure 8. Tests for numerical accuracy; (a) comparison involving order of accuracy of numerical scheme; (b)
comparison involving different discretizations.

vortex can cause a very different effect on the shock structure depending on the strength of the
shock in the interaction region. This effect could range from a non-symmetric deformation to
a temporary disruption of the shock wave in the interaction region.

The part of the shock wave that moves into a region where the fluid velocity is in the same
direction as the advancing shock wave experiences a decrease in the relative Mach number and
a consequent weakening of that part of the shock. If this relative Mach number approaches
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Figure 9. Particulars of free vortex; (a) tangential velocity profile; (b) pressure and density normalized with respect to
ambient.

sonic values, a full scale disruption in the shock structure could occur. This weakening and a
tendency towards disruption will be most prominent when a part of the shock wave has the
least possible relative Mach number during the shock–vortex interaction. As noted the
tendency of a counter-clockwise rotating vortex is to change the curved shock into being
almost horizontal (parallel to the x-axis) in the interaction region, while the tendency of a
clockwise rotating vortex is to make it almost vertical. Thus, the first disruption is most likely
to occur due to a counter-clockwise rotating vortex when the shock wave is almost aligned
with the vortex diameter parallel to the x-axis. In this position, the part of the shock wave left
of the vortex center has the least possible relative Mach number in the interaction. For a
clockwise rotating vortex, the least relative Mach number occurs when it is aligned with the
vortex diameter almost parallel to the y-axis. In this position, the least relative Mach number

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 257–277 (1999)



A. CHATTERJEE AND A. POVITSKY276

Figure 10. Shock wave Mach number for the modified and initial configuration: the resultant relative Mach number
as a function of incident shock wave Mach number.

for the shock occurs below the vortex center and the initial disruption is likely to be
encountered here.

This temporary disruption in the shock wave was analyzed in a more simple framework that
considers planar shock waves of various incident Mach numbers (in the same range as that for
the curved shock) propagating into a flow field having a velocity (corresponding to the peak
tangential vortex velocity) in the same direction as the propagating shock wave. The shock
wave degenerates to a Mach wave for similar values of incident Mach numbers as that

Figure 11. Incident shock wave Mach number required for disruption for various peak tangential Mach numbers of
vortex.
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encountered in the initial disruption process of a curved shock wave interacting with a strong
compressible vortex. This shows that the tendency towards shock wave disruption in the
relatively complicated case of a curved shock–vortex interaction can be predicted by simple
one-dimensional considerations.
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